Food webs alter as warmer seas change colour

Reflected sunlight tells a story: one of deeper shading in an ever-warmer ocean. That is because climate change will also alter green growth in the high seas.

glacier
Antarctic seas are set to look distinctly more green, say researchers. Image: Deposit Photos

The Blue Planet is to get a little bluer as the world warms and climates change. Where the seas turn green, expect an even deeper verdant tint, new research suggests.

Since humans began increasing the levels of greenhouse gases in the atmosphere – by burning the fossil fuels that have provided the energy for both economic growth and a population explosion – the oceans have warmed in ways that affect marine life. They have grown ever more acidic, in ways that affect coral growth and fish behaviour.

But when US and British scientists tested a model of ocean physics, biogeochemistry and ecosystems – intending to simulate changes in the populations of marine phytoplankton or algae – they also incorporated some of the ocean’s optical properties. Since green plants photosynthesise, they absorb sunlight, and change reflectivity.

And, as mariners have known for centuries, the blue ocean is blue because levels of marine life in the warmer mid-ocean waters are very low.

The researchers tweaked their simulation to see what the world would look like in 2100 if humanity carried on burning fossil fuels on the notorious business-as-usual scenario and took global average temperatures up to 3°C above historic levels.

And they found that higher temperatures would alter the global palette. More than half of the world’s oceans would intensify in colour. The subtropics would become even more blue, and the oceans that sweep around the poles would become an even deeper green, they report in the journal Nature Communications.

“The models suggest the changes won’t appear huge to the naked eye, and the ocean will still look like it has blue regions in the subtropics and greener regions near the equator and the poles,” said Stephanie Dutkiewicz, of the Massachusetts Institute of Technology, who led the research

There will be a noticeable difference in the colour of 50 per cent of the ocean by the end of the 21st century. It could be potentially quite serious.

Stephanie Dutkiewicz, lead researcher, Massachusetts Institute of Technology

Wider effects

“That basic pattern will still be there. But it will be enough different that it will affect the rest of the food web that phytoplankton supports.”

The clearer the water, the bluer the reflection of the sunlight. From space, the world looks blue. Waters rich in phytoplankton are by definition rich too in chlorophyll that absorbs blue wavelengths and reflects a green tint. But changes in chlorophyll colouring, observed over the decades from satellite monitoring, can be affected by natural climate cycles and shifts in nutrient supply.

The researchers were looking for a more complete model of the wavelengths of visible light that are absorbed, scattered or reflected by living things. They devised one, and tested their new model against satellite evidence so far. When they found agreement with the past, they had also found yet another way to read the future

Explaining ecosystem change

They tuned their simulated planet to the 3°C warming that seems inevitable unless humans rapidly shift from fossil fuels to renewable energy sources, to discover that wavelengths of light around the blue-green spectrum shifted the fastest. The shifts in colour could tell a story of altered ecosystems.

“The nice thing about this model is that we can use it as a laboratory, a place where we can experiment, to see how our planet is going to change,” Dr Dutkiewicz said.

“There will be a noticeable difference in the colour of 50 per cent of the ocean by the end of the 21st century. It could be potentially quite serious..

“Different types of phytoplankton absorb light differently, and if climate change shifts one community of phytoplankton to another, they will also change the types of food webs they can support.” 

 This story was published with permission from Climate News Network.

Did you find this article useful? Join the EB Circle!

Your support helps keep our journalism independent and our content free for everyone to read. Join our community here.

Most popular

Featured Events

Publish your event
leaf background pattern

Transforming Innovation for Sustainability Join the Ecosystem →